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Study offers the idea of utilizing machine-learning (ML) to forecast performance of a 50G-WDM-PON based on dual-parallel 
Mach-Zehnder-Modulator. Millimeter wave-over-fiber is also introduced with dual-parallel MZM based 50G-WDM-PON network 
by combining the benefits of millimeter wave and fiber-optic. Machine learning uses data-driven algorithms to extract patterns 
and relationships from previous network performance data. The numerical simulation is investigated with machine learning 
model to predict the performance of the signal in terms of Q-factor and error rate. ML model provides good accuracy of greater 
than 75%. Only one logistic model offers less than 90%. Findings show successful performance parameters using ML. 
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1. Introduction  
 

A new era of unprecedented connection has been 

ushered in by fifth-generation (5G) wireless networks, 

which have opened the door for a wide range of cutting-

edge applications like the Internet of Things (IoT), smart 

cities, and autonomous vehicles. High-speed data 

transmission, extremely low latency, and dependable 

connectivity are necessary for these applications [1]. 

Advanced optical networks are becoming necessary to meet 

these needs. A possible technique for providing end 

consumers with high-speed broadband services is PONs. 

The 50G-WDM-PON stands out among the various PON 

systems because it can send numerous signals at once over a 

single optical fiber using WDM [2]. This technology offers 

more flexibility and capacity, which qualifies it to support 

the data traffic produced by 5G applications. 

To address the growing demand for fast and 

dependable connectivity in the era of fifth-generation (5G) 

wireless networks, sophisticated optical network 

deployment is crucial. It has become clear that passive 

optical networks (PONs) are a viable option for providing 

high-speed internet services. The 50G-WDM-PON, one of 

the PON technologies, has drawn a lot of attention since it 

uses WDM to send many messages simultaneously over a 

single optical fiber [2]. The idea of millimeter wave over 

fiber has been introduced to improve the performance of 

50G-WDM-PON networks for 5G applications. High-speed 

and dependable connection for 5G applications can be 

provided by a dual-parallel MZM based 50G-WDM-PON 

network by combining the benefits of millimeter wave 

frequency and fiber-optic communication [3][4]. 

An existing technology called WDM-PON combines 

the benefits of PON and WDM. It increases network 

capacity by allowing the simultaneous transmission of 

several wavelengths over a single optical fiber. 

Additionally, the optical distribution network's passive 

design does away with the necessity for active electrical 

components, which lowers power usage and maintenance 

expenses. In this situation, the 50G-WDM-PON network 

built on dual-parallel MZM technology offers a potential 

option to meet the needs of 5G applications [5]. Utilizing 

two MZMs running in parallel, the dual-parallel MZM 

architecture enables the effective creation of high-speed 

optical signals. With this approach, the modulation speed is 

virtually doubled, allowing for data transfer at 50 Gbps per 

wavelength. The dual-parallel MZMs' advantages are taken 

advantage of by the suggested network design to enable 

rapid data transfer in a WDM-PON configuration. The 

network can accommodate numerous end-users with 

multiple smart devices along with base stations 

simultaneously by utilizing various wavelengths, each of 

which is capable of providing 50 Gbps. As a result, the user 

experience is enhanced and 5G network capacity is raised.  

The idea of millimeter wave over fiber has been 

presented to significantly improve the performance of 50G-

WDM-PON networks for 5G. Millimeter wave frequencies 

are well suited for handling the enormous amount of data 

traffic produced by 5G applications since they have wide 

bandwidths and fast data rates. A dual-parallel MZM based 

50G-WDM-PON network can be created to offer fast and 
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dependable connection for 5G applications by merging 

millimeter wave and fiber-optic communication [2],[6]. 

However, it is extremely difficult to anticipate the 

functioning of such a complicated network with any degree 

of accuracy. It is challenging to get precise performance 

predictions using conventional analytical models due to the 

interaction between optical and wireless components and 

the constant change of the network environment [7]. 

Additionally, a thorough understanding of the behavior of 

the network under various operating conditions is necessary 

for creating an optimized network and efficiently allocating 

resources. 

To overcome these difficulties, we suggest a 

schematic method that makes use of machine learning 

techniques to forecast the performance of the input signal by 

utilizing the dual-parallel-MZM approach to implement 

the 50G-WDM-PON network using the idea of millimeter 

wave over fiber for 5G applications [8],[9]. Large datasets 

may be analyzed using machine learning algorithms, which 

can also identify patterns and make predictions. We can 

precisely forecast the network's performance 

and optimize its architecture and resource allocation by 

building a machine learning model using a large dataset that 

captures the network's behavior under various operating 

situations [10]. 

Xingrui Huang et al. (2022) reported the dual-parallel 

Mach–Zehnder modulator to enhance the linearity by using 

platform called thin-film lithium niobate. The system was 

set to the optical along with electric splitting ratio to 

perform the two different tasks. The third-one 

intermodulation distortions (IMD3) were canceled to the 

descendent Mach–Zehnder whereas first-one was gotten at 

maximum limit. To enhance the device stability and 

operational complexities, passive devices were used to 

manage the power consumption as well as Mach–Zehnder 

phases. The proposed system presented the experimental 

positive outcomes and the half wave voltage got at 2.8V as 

well as 70 GHz of expected bandwidth [11]. 

Fabio B. de Sousa et al. (2021) designed the millimeter 

wave generation by using the dual stage Parallel Mach–

Zehnder modulator that was based on the concept of radio 

over fiber. The multiple frequencies 20 GHz to 80 GHz 

were investigated that presented the variations of millimeter 

wave. At stage one, two MZM were used parallel and linked 

to another one at the 10 Gbps. Numerical analysation was 

done for the eye diagram that presented the error rate and Q-

Factor which proved the excellence performance of 

proposed system 3-tippling millimeter wave [12].  

Ruwei Li et al. (2020) proposed the decoupling control 

technique for the modulation that was based on dual Parallel 

Mach–Zehnder modulation that helped to sort out the issue 

of signal degradation due to the ambient temperature, during 

transmission fiber loss and etc. With the help of Carrier 

Suppressed Single Sideband (CS-SSB) introduced the three 

voltages that were non-disturbing at the bias end and output 

end. It was proven that proposed technique was helpful to 

stabilized Optical Sideband Suppression Ratio and useful in 

microwave photonics in practical manner [13].  

S. Jacqueline et al. (2020) presented a comprehensive 

approach was in contrast to state-of-the-art contributions, 

including target-oriented data gathering and processing, 

modeling and model deployment, as well as technological 

implementation in the already-existing IT plant 

infrastructure. a machine learning approach and edge cloud 

storage technologies, both integrated the solutions for 

predictive model-based quality testing in industrial 

manufacturing.  To highlight the steps and advantages of the 

suggested strategy, a case study in SMT production that 

involved real-world industrial settings was employed. The 

findings demonstrated that the proposed strategy could 

greatly reduce inspection volumes, leading to the creation of 

economic benefits [14].  

P. L. Bokonda et al. (2020) focused on work was to 

undertake a survey of the literature on machine learning 

trends and techniques for predictive analysis. They used a 

compilation of studies from three academic databases to do 

this. Then thought about the selection criteria, prioritising 

studies published in peer-reviewed scientific journals and 

limiting the study to papers published within the last five 

years. Thirty research papers were chosen through this 

approach and were given consideration for this review. 

Based on the most recent research works in the literature, 

the goal of this study is to give researchers, businesses, or 

anyone else interested in performing predictive analysis 

hints that will help them to select the best ML method(s) 

according to its field of application [15]. 

Jin Yuan et al. (2019) analyzed the photonic-assisted 

microwave generator theoretically. Two techniques were 

used to generate the sinusoidal signal that was dual-parallel 

Mach–Zehnder and square formed waveforms. Two 

waveforms had been generated called flat top and Gaussian 

with the concern of bias drifts, delay of time delay line, and 

modulation index. As a result dual-parallel Mach–Zehnder 

modulator was played vital role that helped to enhance the 

performance and made it more practical [16].   

Shankar Duraikannan et al. (2018) proposed the 

cascaded architecture to reduce the non-linear effect of 

Mach–Zehnder modulator. The Dual Drive and Dual 

Parallel Mach Zehnder Modulation based architecture were 

analyzed and compared. On the basis of carrier triple beat, 

N number of channels has been analyzed. The outcome of 

proposed both systems presented the enhanced performance 

of the network [17]. 

Hui Zhou et al. (2018) reported the scheme of radio 

over fiber by the support of dual-parallel Mach-Zehnder 

modulator to generate the millimeter wave signal with 

interval 8fRF. The semiconductor optical amplifier is also 

used for the several base stations along with the dual-

parallel modulator. Proposed scheme was investigated at the 

separate spectrum range from 20 GHz to 60 GHz at the 2.5 

Gbps of transmission rate. The numerical simulation was 

done and results presented that network architecture 

performed in well manner which was serving multi base 

stations. This schematic approach could support the multi 

millimeter waves and enhance the system performance [18].     

Peng Yue et al. (2015) proposed dual-parallel Mach–

Zehnder modulator for high tolerance and to reduce the non-

linear effect with the help of 3 Multimode Interference 

couplers. It was capable to tolerate the high range and errors 

because of interference couplers that were of reconfigurable 
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type. As a result, presented system was improved and could 

maintain the dynamic range that was above the 104.00 

dB·Hz4/5. The loss of Multimode Interference couplers 

because of utilizing it that was extremely low [19]. 

We outline the inspiration, goals, and design of our 

research in this paper. We will also talk about the dataset 

creation procedure, performance metrics, and system model. 

We will also go over how machine learning models for 

performance prediction are created and used. Finally, we 

will discuss the simulation and experimental findings, 

confirm the viability of our strategy, and offer suggestions 

for future research. In the section 1.2, simulation setup is 

detailed. The result and discussion presents the outcome of 

the proposed system in section 1.3. The evaluation of ML 

models are discussed in section 1.4. The results of ML 

models and their comparisons are explained in detail under 

1.5.  Section 1.6 concludes the paper.  

 

 

2. Simulation setup 

 
Fig. 1 depicts the block diagram, which divides the 

symmetric 50G-WDM network into optical line terminals 

(OLTs) and optical network units (ONUs). At OLT, the 

dual parallel MZM is used to multiplex four channels. As 

opposed to ONU, this can use distinct pulse generators to 

present the output for each channel at the receiver side. For 

the 60km of the reversible bridge that make it symmetric, 

bidirectional fiber is employed. 

 

 

Fig. 1. 50G-WDM block diagram based on DP-MZM 

 

Fig. 2 illustrates how a transceiver operates. The 

transceiver is divided into two stages, transmitter and 

receiver that show the results. Continuous wave (CW) lasers 

with 1340 nm and 1260 nm wavelengths are utilized as the 

optical source at the first stage of the transmitter for the 

downstream and upstream directions. These lasers are 

divided by a splitter and connected to the MZM in parallel. 

According to 5G requirements, sine wave is utilized to 

modify the millimeter wave spectrum at 32 GHz and is 

connected to the MZM as a CW laser. The carrier signal is 

divided into two parts as input for two MZM and combiner 

combines the outcome of the input and sends it to the next 

MZM. The encoding lines non-returns to zero, is used to 

encode the 50 Gbps of data. The data is modulated at 50 

Gbps with a third Mach-Zhender, using a different two 

MZM as the upper arm and lower arm. The millimeter wave 

is generated at 32 GHz by the sine wave source and 

modulated on fiber. The output of the third MZM is then 

connected to a 60 km long bidirectional single mode fiber, 

which transmits the input signal to the receiver. Before 

being received at ONU, the input signal is amplified by the 

EDFA and filtered using a Gaussian optical filter that 

supports for long fiber distance. 

There is a 1 nm channel gap between each channel. The 

output is received by the receiver at the ONU unit, which 

divides it into the three encoded line formats specified 

above in the transmitter. To serve mobile customers, the 

optical signal is converted into electrical form using a PIN 

diode, and the signal and noise are separated using a low 

pass Bessel filter. The electric signal is presented using the 

dotted lines, while the optical linkages are shown using the 

other strong lines.    
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Fig. 2. 50G-WDM transceiver based on DP-MZM (color online) 

 

 

3. Results and discussion 
 

Optisystem software version 19 is used to simulate the 

DP-MZM-based millimeter wave over WDM-PON 

presented system. The suggested system provides superior 

results than the survey by displaying the data in terms of the 

Q-factor, eye diagram, and mistake rates. Using the 

millimeter wave spectrum at 32 GHz at 1340 nm, the Q-

factor downstream of Fig. 3 depicts all ONUs for encoding 

line non returns to zero at 50 Gbps. The variations 

according to fiber distance were shown in the graphical 

format. Using single-mode fiber, the separated coverage 

area from 20 km to 60 km can display variations of Q-factor 

that are greater than 11. The separate colored lines 

demonstrate a better factor for encoding line at a distance of 

60 km. Due to the non-linear effects of the fiber, the Q-

factor decreases as the fiber span increases. 

 

 

 
 

Fig. 3. Downstream comparison of Q-factors (color online) 
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Fig. 4. Accuracy comparison of classification methods for upstream (color online) 

 

 
 

 

Fig. 4 depicts the upstream Q-factor in the identical 

scenarios as those displayed for the downstream Q-factor 

above. In this picture, we analyses how the system's 

performance degrades as the fibre distance increases. Using 

single mode fiber, the separated coverage area of 20 km to 

60 km can see the changes of Q-factor that are >11. The 

unique colored lines on both the non-returns to zero line 

demonstrate the superior factor corresponding the 

downstream and upstream at 60 km. 

 

An essential performance indicator in proposed system 

that assesses the caliber of the communication link is the 

BER. The number of incorrect bits received divided by the 

total number of transmitted bits is how the BER is 

commonly expressed. The error rate is displayed graphically 

that is shown in Fig. 5, with encoding format non-returns to 

zero shown at various wavelengths for downstream and 

upstream, respectively. The permissible error rate range is 

10
-8 

to 10
-22

, and the four channels are timed at the x-axis. 

The two different colored lines make it easy to see the 

difference between downstream and upstream. 
 

 

 
 

Fig. 5. BER for both downstream and upstream (color online) 
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Fig. 6. Eye Diagram of the proposed system at 60 km for downstream (color online) 

 

Eye diagrams for both uplink and downlink, which are 

progressively displayed in Figs. 6 and 7 are another method 

of performance evaluation. The opened eye that reveals the 

channel quality is displayed the transmitted channels for the 

downstream and upstream. The wave-like signal illustrates 

how much data is smoothly conveyed in the form of wave 

thickness. In addition to graphical representation, the 

suggested system's optical signal is evaluated with 

consideration for the non-linear influence of the fiber. The 

output sweeps are almost 2000 because to different values 

of input factors such optical fibre length, transmit power, 

and dispersion. That indicates that the dataset was produced 

after 2000 iterations at the simulation's output. In Tables 1 

and 2 we present parameters and sample dataset 

respectively. 
 

 

 

 

 

 

 

 

 

 

Ch1 Ch2 

Ch3 Ch4 

Time (bit period) Time (bit period) 

Amplitude (a.u.) Amplitude (a.u.) 

Time (bit period) Time (bit period) 

Amplitude (a.u.) 

Amplitude (a.u.) 

-1
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Fig. 7. Eye Diagram of the proposed system at 60 km for downstream (color online) 

 

 
Table 1. Parameters and its ranges 

 

Parameter  Value 

Fiber length  3 to 60 kms 

Frequency 32 GHz 

Transmission power -5 to 5 dbm 

Line width 10 MHz 

Extinction Ratio 15db 

 

 

 

 

 

 

Ch1 Ch2 

Ch3 Ch4 

Time (bit period) Time (bit period) 

Time (bit period) Time (bit period) 

Amplitude (a.u.) 

Amplitude (a.u.) 

Amplitude (a.u.) 

Amplitude (a.u.) 
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Table 2. Dataset used in simulation 

 

Dispersion Fiber Length 

Channel 

Power 

CH1:    

Q-Factor  

CH2:    

Q-Factor 

CH3:    

Q-Factor 

CH4:    

Q-Factor 

7 6 -5 43.6054 36.1506 35.835 40.9439 

8 6 -5 41.156 34.8805 37.2696 42.7539 

9 6 -5 42.2827 35.7668 35.9561 41.7744 

10 6 -5 43.9166 37.5386 36.0979 43.0692 

11 6 -5 43.2978 35.3663 35.1335 42.9728 

12 6 -5 46.1288 37.4222 35.1055 42.283 

13 6 -5 40.3107 35.0999 36.3435 41.4646 

14 6 -5 45.124 36.9514 36.9319 42.5531 

15 6 -5 43.045 36.8271 36.5322 41.0113 

16 6 -5 41.1645 34.7897 35.3056 41.2146 

7 3 -3.88889 42.2598 34.9323 36.1749 41.4209 

8 3 -3.88889 42.5213 36.2155 35.5764 43.8378 

9 3 -3.88889 47.6836 37.6511 35.6673 42.4024 

10 3 -3.88889 44.2086 34.8368 35.939 44.6815 

11 3 -3.88889 46.4299 36.4233 37.3593 43.398 

12 3 -3.88889 42.2178 32.6033 31.6772 40.0506 

13 3 -3.88889 45.3387 36.2653 37.5844 42.5883 

14 3 -3.88889 48.3989 36.5942 37.4197 43.9252 

15 3 -3.88889 44.0729 35.6218 37.9754 42.8299 

16 3 -3.88889 43.6188 36.158 36.773 41.6541 

7 6 -3.88889 42.0085 35.8054 39.4627 43.0483 

8 6 -3.88889 41.8017 35.9244 38.4871 42.4806 

9 6 -3.88889 40.7917 36.415 33.998 40.2993 

10 6 -3.88889 42.5739 35.5616 35.9599 43.0538 

11 6 -3.88889 42.9184 35.6217 35.8408 41.7967 

12 6 -3.88889 42.8461 35.748 33.8593 40.7447 

13 6 -3.88889 44.5662 36.865 35.0612 42.7722 

14 6 -3.88889 43.7285 35.6249 34.8038 43.5488 

15 6 -3.88889 42.7519 35.5812 34.2652 40.6981 

16 6 -3.88889 42.166 34.5292 36.1847 42.7002 

 
 
4. Evaluation of machine learning algorithms  
    in 50G-WDM 
 

In this section, we provide some of the ML 

applications. We first provide an overview of the typical 

performance metrics adopted in ML. Then, we select some 

of the ML algorithms used in this chapter, whose 

performance has been quantitatively compared for the 

classification of Q-factor classes. We also provide a quick 

description of the selected ML algorithms. Then we 

employed the dataset, which is created from Optisystem, in 

different selected ML algorithms for the desired task. 

 

4.1. Performance Matrix  

 

We list a few ML applications in this area. We start by 

outlining the typical performance indicators used in 

machine learning. Then, we pick a few of the machine 

learning (ML) methods that were employed in this chapter 

and whose categorization of Q-factor classes performance 

has been statistically compared. We also give a brief 

overview of the chosen ML algorithms. Then, for the 

necessary goal, we used the dataset generated by 

Optisystem in various picked ML algorithms. 

 

4.2. Confusion Matrix 

 

The confusion matrix provides a comprehensive 

overview of the classifier performance given a binary 

classification problem where samples in the test set are 

either positive or negative. It displays 1) the true positives 

(T P) and true negatives (T N), or the number of samples of 

the true and false classes, respectively, that have been 

correctly classified, and 2) the false positives (F P) and false 

negatives (F N), or the number of samples of the true and 

false classes, respectively. Note that accuracy can be 

represented as (T P + T N)/(T P + T N + F P + F N) using 

these definitions. 

 

4.3. Receiver Operating Characteristic (ROC)  

       Curve 

 

By increasing the value of the threshold, we decrease 

the number of samples we classify as positive and increase 

the number of samples we classify as negative. This has the 
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effect of decreasing T P while correspondingly increasing F 

N, and increasing T N while correspondingly decreasing F 

P, and as a result, both the TPR and the FPR are decreased. 

The ROC curve displays the T P R (on the vertical axis) 

versus the F P R (on the horizontal axis) for various values. 

All samples are categorised as negative when = 1, therefore 

T P R = F P R = 0. On the other hand, if = 0, then all 

samples are categorised as positive, leading to T P R = F P 

R = 1. Any classifier's ROC curve always lies somewhere 

between these two extremes. In the (F P R, T P R) plane, 

classifiers that successfully capture relevant information 

produce a ROC curve that is above the diagonal and strive 

to resemble the ideal classifier, which connects the points 

(0,0), (0,1), and (1,1). 

 

4.4. Logistic Regression  

 

Although there are many more intricate variants, it is a 

statistical model that, in its most basic form, uses a logistic 

function to model a binary dependent variable. Logistic 

regression, often known as logit regression, is a type of 

binary regression used in regression analysis to estimate the 

parameters of a logistic model. 

 

4.5. Area under the ROC Curve (AUC) 

 

The AUC measures how closely a particular classifier 

performs to the performance of a perfect classifier by taking 

values in the [0, 1] range. The AUC is a synthetic numerical 

measure to indicate algorithm effectiveness regardless of the 

particular choice of the threshold, but the ROC curve is an 

effective graphical means of evaluating the performance of 

a classifier. 

 

 

4.6. Akaike Information Criteria (AIC) 

 

This measure illustrates how well a given model fits the 

data. By setting a criterion that is a mathematical function of 

the number of estimated parameters by the model and the 

maximum likelihood function, it calculates the divergence 

of a selected statistical model from the 'true model'. The 

optimal model to match a given dataset is thought to have 

the lowest AIC. 

  

4.7. Metrics from the Optical Networking Field 

 

To have a quantitative grasp of how the ML algorithm 

affects the optical network/system, measures from the 

networking area might be employed in addition to the 

standard numerical and graphical metrics utilized in the ML 

context. For instance, an operator might be curious about 

the bare minimum of optical performance monitors needed 

to deploy along a lightpath in order to accurately classify a 

degraded transmission. In a similar vein, an operator might 

be curious about the bare minimum OSNR and/or signal 

power level needed at an optical receiver in order to 

accurately identify the chosen MF. An operator may also 

wonder how frequently BER samples should be taken in 

order to accurately predict or localize an optical failure 

along a lightpath. 

 

4.8. Accuracy  

 

By displaying the likelihood that the class label's true 

value exists, accuracy provides an approximation of the 

algorithm's effectiveness; in other words, it evaluates the 

algorithm's general efficacy. 

 

4.9. Precision 

 

Sensitivity (specificity) roughly approximates the 

probability of the positive (negative) label being true; in 

other words, it evaluates the algorithm's effectiveness on a 

single class. Precision estimates the predictive value of a 

label, either positive or negative, depending on the class for 

which it is calculated; in other words, it evaluates the 

algorithm's predictive power. 

 

4.10. Recall    

 

It speaks of the proportion of all relevant results that 

your algorithm accurately identified as relevant. It is 

calculated by dividing the total number of true positives by 

the sum of all true positives and false negatives. It can be 

viewed as a model's capacity to locate all the relevant data 

points in a data collection. 

 

4.11. ROC  

 

The ROC curve depicts the relationship between the 

algorithm's sensitivity and specificity. Let's say we have 

created a classifier that will be incorporated into an alert 

system. The percentage of alarms that are caused by positive 

events (which should actually fire an alarm) and the 

percentage of alarms that are caused by negative events are 

often of particular interest to us. Since the proportion of 

good to negative incidents can change over time, we want to 

gauge the effectiveness of our alert system independent of 

this proportion. In these situations, the ROC curve. 

 
4.12. F-score  

 

It is a composite metric that favors algorithms with 

more sensitivity and puts greater specificity algorithms to 

the test. These factors lead us to the conclusion that SVM is 

superior to NB. Will this be the case always, though? We 

will now demonstrate how a program's ability to outperform 

another program (such as SVM) depends greatly on the 

assessment metrics used. 

 

 

5. Results and discussion 
 

We displayed the results of several models of ML 

algorithms in Table 3. Numerous parameters are displayed 

in the table, including accuracy, build time, precision, recall, 

and F measure along with the accuracy. By examining every 

parameter, we discovered that every ML model is producing 
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high-quality outcomes. Every ML model provides good 

accuracy of greater than 75%. Only one logistic model 

offers less than 90%. 

 

 

 
Table 3. Results for 7 classes 

 

 LOGISTI

C 

(LR) 

J48 

 

Classification 

via Regression 

(M5P) 

Decision 

Table 

(DT) 

PART Random 

Forest 

Accuracy (%) 78.92 93.05 93.80 90.75 92.93 93.30 

Time Taken to build 

(sec ) 

2.73 0.22 1.5 0.34 0.8 2.92 

Precision (%) 75.4 93.0 93.7 90.5 92.9 93.3 

Recall (%) 78.9 93.1 93.8 90.8 92.9 93.3 

ROC Area (%)  90.1 98.6 99.7 97.9 98.5 99.2 

F measure 76.4 93.0 93.7 90.6 92.9 93.3 

 

 

Different ML models that we chose are tested on a 

dataset of seven classes. We evaluate good accuracy (100%) 

with shorter constructed time when comparing the output of 

several models. Table has been given in order to assess the 

ML algorithm's performance on GPON. We learned from 

the findings that ML model J48 and PART offer excellent 

accuracy in a short amount of time. 

 

 

5.1. Precision for Downstream and Upstream 

 

Information about precision for various ML algorithms 

is provided in Figs. 8 and 9. We may analyze the various 

classes from the graph. We discovered through individual 

class analysis that "Not Acceptable Class and Good" are 

producing accurate results with a 90%+ accuracy rate. It 

presents the results for both downstream and upstream. 

 

 

Fig. 8. Precision comparison of classification methods for downstream (color online) 
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Fig. 9. Precision comparison of classification methods for upstream (color online) 

 

 

 

5.2. Recall for downstream and upstream 

 

Information on recall values for various ML classifiers 

is shown in Figs. 10 and 11. We may analyze the various 

classes from the graph. We discovered through individual 

class analysis that "Not Acceptable Class and Good" are 

producing outcomes with above 90% recall. It presents the 

results for both downstream and upstream. 

 

 

 
 

Fig. 10. Precision recall comparison of classification methods for downstream (color online) 
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Fig. 11. Precision recall comparison of classification methods for upstream (color online) 

 

 

5.3. F Measure 

 

We examine each class from the graph in Figs. 12 and 

13 individually for both downstream and upstream. We 

discovered through individual class analysis that the classes 

"Not Acceptable Class and Good" are consistently 

producing excellent outcomes in ML models. It presents the 

results for both downstream and upstream. 

 

 

 
 

 

Fig. 12. F measure comparison of classification methods for downstream (color online) 
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Fig. 13. F Measure comparison of classification methods for upstream (color online) 

 

 

We discovered that all three classes are delivering 

excellent performance above 90% in all ML models by 

analyzing the individual classes in each case. However, only 

the logistic regression model delivers subpar outcomes. The 

accuracy is also shown in Figs. 14 and 15 for both 

downstream and upstream. 

 

 

 
 

Fig. 14. Accuracy comparison of classification methods for downstream 
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Fig. 15. Accuracy comparison of classification methods for upstream 

 

 
6. Conclusion 
 

The performance of the proposed system 50G-WDM-

PON network that is based on dual-parallel-MZM with the 

idea of millimeter wave over fiber for 5G applications can 

be predicted using a novel method provided in this article 

using machine learning techniques. This network design 

provides high-speed and dependable connectivity to serve 

the significant data traffic produced by 5G applications by 

combining the benefits of millimeter wave frequency and 

fiber-optic communication. The efficiency of the suggested 

machine learning-based technique has been shown by 

simulation and experimental findings. By examining every 

parameter, we discovered that every ML model is producing 

high-quality outcomes. Every ML model provides good 

accuracy of greater than 75%. For the future utilizing 

machine learning methods creates new opportunities for 

network performance optimization, resource allocation 

strategy enhancement, and ultimately satisfying the rigorous 

criteria of 5G applications. 
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